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Abstract:We have carried out ab initio hybrid Hartree-Fock/Density Functional Theory simulations to determine the structure and
vibrational modes of zircon, ZrSiO4, as a function of different applied strains. The changes in phonon-mode wavenumbers are
approximately linear in the unit-cell strains, and have been fitted to determine the components of the phonon-mode Grüneisen tensors
of zircon which reproduce the change in measured Raman shifts with pressure. They can therefore be used to convert Raman shifts
measured from zircon inclusions in metamorphic rocks into strains that in turn can be used to determine the metamorphic conditions
at the time that the inclusion was trapped. Due to the strong anisotropy in the thermal pressure of zircon, the phonon-mode Grüneisen
tensor is not able to reproduce the temperature-induced changes in Raman shifts. Because zircon inclusions are normally measured at
room conditions this does not prevent the calculation of their entrapment conditions.
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1. Introduction

The discovery of coesite inclusions in garnet in the Dora-
Maira massif (Chopin, 1984) was “the little mineral that
changed everything” (Tremblay, 2013). The discovery
clearly indicated that continental crust can experience pres-
sures in excess of 2.8 GPa and be subsequently exhumed.
The question of whether these rocks experienced lithostatic
pressures of 2.8 GPa and thus depths of metamorphism of
90 km or more, or whether instead they experienced signif-
icant deviatoric stress that stabilised coesite with respect to
quartz at much shallower depths, was raised almost immedi-
ately by Smith (1984) in his description of coesite inclusions
in pyroxenes from the Western Gneiss Region of Norway.
The origin of such over-pressures could be on the micro-
scale, generated by grain–grain interactions between miner-
als with different thermo-elastic properties, on the scale of
the outcrop as indicated by the strongly heterogeneous
deformation of the Dora-Maira rocks at peak conditions
(Henry et al., 1993) or be regional in scale due to tectonic
overpressure (e.g., Schmalholz & Podladchikov, 2014;
Gerya, 2015).
Conventional thermo-barometry is challenged in ultra-

high-pressure metamorphic (UHPM) terrains because it
relies on thermodynamic equilibrium being attained in the
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rocks, and the textures and peak phase assemblage being
preserved during exhumation. A complementary method of
geobarometry, based on the stress state of inclusions in
high-pressure minerals, has been developed over the past
two decades, based on the original ideas of Rosenfeld &
Chase (1961). The basic idea is that a mineral such as coesite
or zircon trapped inside a garnet that has grown at UHPM
conditions will exhibit residual stresses when examined at
room conditions, as a result of the contrast in thermoelastic
properties (the equations of state [EoS]) of the host and the
inclusion mineral. In simple terms, the inclusion mineral is
constricted by the host and cannot expand freely on exhuma-
tion as would a crystal of the samemineral in the rock matrix.
Knowledge of the EoS of the minerals allows possible
entrapment conditions of the inclusion to be calculated and
thus provides a second type of geobarometer completely
independent of chemical equilibrium (Rosenfeld & Chase,
1961). Recent developments in theory have expanded the
original isotropic models for calculating entrapment condi-
tions (e.g., Gillet et al., 1984; Zhang, 1998; Angel et al.,
2014) to allow for the effects of the shapes and the local
environment of the inclusions (Campomenosi et al., 2018;
Mazzucchelli et al., 2018). The effects of the anisotropy of
the inclusion minerals trapped within a host that is elasti-
cally isotropic can also be calculated by extension of these
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methods. Calculations of entrapment conditions are based on
the strain state of the inclusion mineral still buried in its host
relative to a free crystal of the same mineral at room condi-
tions. The challenge is that small faceted inclusions can exhi-
bit significant strain gradients (e.g., Campomenosi et al.,
2018; Murri et al., 2018) and these cannot be measured by
X-ray laboratory diffraction because the large X-ray beams
illuminate all or most of the inclusion and therefore return
some average value of the unit-cell parameters of the inclu-
sion and hence the strains. Such average values cannot be
used to determine entrapment conditions of the inclusion.
As shown in the original work on the coesite inclusions
(Chopin, 1984; Smith, 1984), Raman spectra can be col-
lected from much smaller volumes (of the order of 1 lm3)
and allow local strains to be determined if the values of the
phonon-mode Grüneisen tensors for the inclusion phase are
known (Angel et al., 2019). The values of the components
of these tensors can be determined by calculating the Raman
spectra of the inclusion mineral under different strain condi-
tions with Density Functional Theory (DFT) (Murri et al.,
2018, 2019). Coesite, being monoclinic, is a challenge for
this approach because it requires many more simulations of
different strain states to be performed than are required for
a uniaxial mineral such as quartz, and the theory for calculat-
ing the elastic relaxation of monoclinic mineral inclusions
has yet to be developed. However, zircon is also ubiquitous
as an inclusion mineral in garnets in UHPM rocks such as
those found in Dora-Maira (Schertl et al., 1991), and has
the potential to be used as an elastic geobarometer as well
as providing the opportunity for radiometric dating of the
time of entrapment. In this paper we present the results of
DFT simulations of zircon under a range of deviatoric strains
in order to determine the components of the phonon-mode
Grüneisen tensors of zircon. We show that these values cor-
rectly predict the change in the Raman shifts of modes under
P, but not under T, and we show that this contrast in beha-
viour to that of quartz is due to differences between the ani-
sotropy of the thermoelastic properties of the two minerals.
The resulting tensor components can be used to determine
the strains in zircon inclusions from measurements of their
Raman spectra and thus ultimately their entrapment
conditions.

2. Computational details

The geometry of the zircon structure was optimised by ab
initio HF/DFT simulations that were performed with the
CRYSTAL17 code (Dovesi et al., 2018) using the same
hybrid WC1LYP Hamiltonian (Wu & Cohen, 2006), basis
sets and parameters that were used for previous simulations
of zircon under hydrostatic pressure (Stangarone et al.,
2019). One full optimization of both the unit-cell parameters
and the atomic positionswas performed at zero pressurewith-
out any constraints except those imposed by the I41/amd
space-group symmetry. This provided the unstrained refer-
ence structure. Atomic fractional coordinates of zircon were
then optimized at 47 different strained configurations with

fixed unit-cell parameters and the a and b unit-cell parameters
kept equal to maintain the tetragonal symmetry. The unit-cell
parameters were chosen to cover the range of strains,
e1 = Da/a, e2 = Db/b, and e3 = Dc/c, expected to be found
in zircon inclusions in garnets. All of the computed geome-
tries are at static equilibrium (i.e., at 0 K, with no vibrational
effects included). For each optimized geometry the normal
modes of vibration and their wavenumbers were calculated
within the limit of the harmonic approximation as described
in Stangarone et al. (2019). The average mismatch between
phonon-mode wavenumbers calculated in this way and
experimental data for a wide variety of minerals is 5 cm�1

(Prencipe, 2019). The calculated phonon-mode frequencies
and the structural data (atomic coordinates and unit-cell
parameters) for the 48 optimisations of zircon are reported
in the crystallographic information file (CIF) deposited as
Supplementary Material linked to this article and freely
available at https://pubs.geoscienceworld.org/eurjmin/.

3. Results

3.1. Structure

The structure of zircon contains Si in tetrahedral coordination
by oxygen, and Zr in 8-fold coordination by oxygen in the
form of triangular-faced dodecahedra (Fig. 1). The Si and
Zr atoms occupy positions that are fixed by the I41/amd
space-group symmetry. The Si and Zr are separated along
[001] by a distance of exactly c/2, and their coordination
polyhedra are joined by a shared O–O edge which form con-
tinuous columns of edge-sharing polyhedra which are paral-
lel to the c-axis. The Zr–O bonds to the O atoms in the shared
edge are 0.13 Å longer than those to O not involved in edge-
sharing with the SiO4, and the O–Si–O angle to the same
shared edge is only 96.5� (e.g., Kolesov et al., 2001; Finch
& Hanchar, 2003). These structural features indicate that
there is a strong repulsive interaction between the neighbour-
ing Zr and Si atoms along [001] (e.g., Kolesov et al., 2001),
which makes this direction more than twice as stiff as the
perpendicular directions under high pressure (e.g., Hazen
& Finger, 1979; Pina-Binvignat et al., 2018).
In the absence of experimental data for the structure and

unit-cell parameters of zircon under deviatoric stress and
strain, the only test of the validity of our DFT results is to
compare the simulations under hydrostatic stress with exper-
imental data. In a previous paper (Stangarone et al., 2019)
we have shown that the simulations under hydrostatic stress
slightly over-estimate the unit-cell volume by 0.6%, and the
Si–O and the shorter Zr–O bond distances by 0.7–0.8%.
This arises from the small error in calculating electron
self-interactions in the core regions of the atoms (Cremer,
2001) in the simulations. Nonetheless, the important distor-
tions of the SiO4 tetrahedra are well-reproduced, the
predicted structural evolution with pressure is consistent
with the limited experimental data (Hazen & Finger,
1979), and the elastic anisotropy of the structure is correct
in the DFT simulations. Similarly, both the Raman shifts
calculated at zero pressure (Table 1) and their change with
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pressure are in good agreement with experimental data
(Syme et al., 1977; Pina-Binvignat et al., 2018).
Figure 2 is a series of contour plots of structural parame-

ters of zircon to show how they respond to the strains e1 and
e3. Under non-hydrostatic conditions the length of the O–O
shared edge between the SiO4 tetrahedra and the ZrO8
dodecahedra, which is perpendicular to the c-axis (Fig. 1),
is almost unchanged under compression of the c-axis, but
it responds to strains e1 in the a–b plane (Fig. 2a). Thus,
when the c-axis is compressed (e3 < 0) the distance between
adjacent Si and Zr is reduced by the same amount as the
unit-cell strain, the O–O edge moves towards the Si, and
thus the corresponding O–Si–O angle opens and increases
towards the ideal tetrahedral angle of 109.47�. As a conse-
quence, the distortion of the SiO4 tetrahedra as measured
by their angle variance (Robinson et al., 1971) decreases
significantly with compression along the c-axis, but is not
changed by strains e1 (Fig. 2b). The length of the Zr–O long
bonds to the O atoms in the shared edge is also therefore

dependent solely on the strain e3 (Fig. 2c). In contrast,
because the shorter Zr–O bonds to polyhedral edges shared
between adjacent ZrO8 polyhedra (Fig. 1) are sub-parallel to
(001), their length is dependent mostly on the strain e1 and is
insensitive to e3 (Fig. 2d). It is the combination of these two
different responses of the long and short Zr–O bonds to
applied strains, induced by the Zr–Si repulsion and the
stiffness of the O–O shared edge, that leads to the volumes
of both the SiO4 tetrahedra and the ZrO8 polyhedra
(Fig. 2e, f) following the isochors of the unit-cell volume
(lines of constant 2e1 + e3) while their distortions
(Fig. 2g) are almost entirely dependent on the deviatoric
strain (e3�e1). In summary, the anisotropy of response of
this O–O shared edge, which must be due to the Si–Zr
repulsion, is responsible for the anisotropy of response of
the other structural parameters.

3.2. Vibrational modes

The wavenumbers of all of the phonon modes in zircon cal-
culated for the structure at the static equilibrium (zero T and
P and with no zero-point pressure included) are listed in
Table 1 as xm

0;DFT. As previously reported in Stangarone
et al. (2019), they are in reasonable agreement with the
values estimated by extrapolating to 0 K the experimental

Fig. 1. Polyhedral representation of the crystal structure of zircon,
showing two adjacent columns of alternating edge-sharing ZrO8 and
SiO4 polyhedra. The long and short Zr–O bonds are indicated.
Drawn with CrystalMaker� (2018).

Table 1. Calculated and observed phonon-modes for zircon.

Symmetry xm
0;DFT
cm�1

Raman
active

IR
active

xm
0;0K

cm�1
xm
0;90K

cm�1

A = active A = active Note 1 Note 2

B1u 130.6
Eg 196.9 A 201.0(2) 203(2)
B1g 213.6 A 215.0(1) 217(2)
Eg 223.1 A 224.2(2) 225(2)
A2g 238.8
B2g 247.8 A 265(2)
Eu 268.2 A
A2u 332.1 A
Eg 341.5 A 358.8(2) 360(2)
Eu 370.8 A
B1g 386.5 A 394.5(2) 395(4)
A1u 397.1
Eu 420.4 A
A1g 437.7 A 441.2(2) 442(4)
Eg 541.0 A 546.8(4) 547(4)
B2u 566.6
A2u 599.5 A
B1g 635.6 A 640.5(6) 642(3)
Eu 862.7 A
Eg 921.0 A 927(2) 927(4)
B2u 938.4
A1g 969.0 A 977.1(2) 978(3)
A2u 980.5 A
B1g 1014.4 A 1012.6(4) 1013(3)

Notes:
(1) Estimated from a 4th-order polynomial fit of experimentally
measured wavenumbers versus T measured over the range from 80
to 1400 K (see Supplementary Material).
(2) Data from Syme et al. (1977).
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values measured over the range of 80–1400 K (full details in
the Supplementary Material of the present paper). The level
of discrepancy is similar to that obtained in previous simu-
lations of the Raman spectra of zircon (Sheremetyeva et al.,
2018) and other silicate minerals (Prencipe, 2019). For ease
of understanding we will refer to the modes by their
wavenumbers as measured experimentally at room condi-
tions, and their symmetries (Table 2).
Figure 3 shows contour plots of the calculated changes in

the wavenumbers of five phonon modes that have been
selected to illustrate the range of behaviour found in zircon.
The contours are lines of equal change in the wavenumbers
of the phonon modes from the unstrained reference state,
and in Fig. 3 they are simply interpolated between the cal-
culated wavenumbers of the DFT simulations, without fit-
ting a model. They join strain states that have the same
wavenumber for the phonon mode and thus, if they are
Raman-active modes, these strained crystals will exhibit
the same Raman shift. As a consequence, it is not possible
to determine the strain, or the stress, in an inclusion by mea-
suring the position of a single Raman peak. We call the con-
tours “isoshift lines”. All of the phonon modes exhibit
isoshift lines that are approximately linear, parallel and
equally spaced (Fig. 3). Different modes have different
slopes of the isoshift lines with respect to the strain axes;
for example the Eg mode near 356 cm�1 clearly responds
more to e1 than e3, whereas the opposite is true for the Eg
mode near 224 cm�1 (Fig. 3b, c). In general, the isoshift
lines are not parallel to isochors, which are lines of constant
2e1 + e3 (e.g., Fig. 3b). The variation of slopes of the isoshift
lines between modes also clearly means that they are not, in
general, parallel to isobars which are lines of equal average
stress (2r1 + r3)/3. This is a general behaviour for crystals,
which we have previously described for quartz (Murri et al.,

2019). It indicates that the phonon-mode wavenumbers
change approximately linearly with applied strains and can
therefore be described by the phonon-mode Grüneisen ten-
sor cm (e.g., Ziman, 1960; Barron et al., 1980; Angel
et al., 2019) which is a linear model. For uniaxial crystals
in which the symmetry is not broken by the strain (as we
have for our DFT simulations), e1 = e2 and the wavenumber
change Dxm is given by:

��xm

xm
0

¼ 2cm1 e1 þ cm3 e3; ð1Þ

in which xm
0 is the wavenumber of the phonon mode in the

unstrained reference state, and cm1 and cm2 ¼ cm3 are the only
two non-zero independent components of the phonon-
mode Grüneisen tensor (Angel et al., 2019). The values
of cm1 and cm3 (Table 2, and cif in Supplementary Material)
were determined for each mode by a least-squares fit of
Equation (1) to the values of Dxm determined from the
47 DFT simulations at different strain states, using the
unstrained simulation as the reference state for the calcula-
tion of both the strains and Dxm. Equation (1) shows that
the values of cm1 and cm3 calculated in this way depend on
both the observed Dxm and the xm

0 of the reference state
(Angel et al., 2019; Murri et al., 2019). Because cm1 and
cm3 will be used to calculate changes in phonon-mode
wavenumbers in zircon relative to room conditions, and
not to 0 K, their values (Table 2) have been calculated
not with xm

0;DFT but with the experimentally observed
wavenumber at room conditions, xm

0;298K.
Consideration of Table 2 together with the isoshift lines of

selected modes in Fig. 3 illustrates some general points
about phonon-mode Grüneisen tensors. The different slopes
of the isoshift lines for different modes in Fig. 3 correspond

Fig. 2. Variation of structural parameters of zircon with non-symmetry-breaking strains e1 and e3. Expansion is towards the top right,
compression towards the bottom left in each plot. The top left and bottom right quadrants represent conditions of shear. All contours are
equally spaced and are interpolated on the underlying data. Contours of distances are labelled in Å, angle variance in degrees, and volumes
in Å3. The blue line in each plot is an isochor. The black dots in part (a) indicate the strain conditions at which DFT structure optimisations
were performed.
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to significantly different values for cm1 and cm3 . The majority
of modes have positive values for both cm1 and cm3 which
means (Eq. (1)) that the phonon-mode wavenumbers
increase with negative strains and decrease with positive
strains (Fig. 3a, b). This corresponds to the normal beha-
viour observed in minerals, that the wavenumbers of phonon
modes increase under pressure and decrease with increasing
temperature. There is also a general trend for the values of
cm1 and cm3 of the modes in zircon to become more similar
in magnitude with increasing wavenumber of the mode
(Table 2). This decrease in anisotropy of the mode Grünei-
sen tensors is due to the decreasing contribution of Zr atom
motions to the higher frequency modes which become dom-
inated by the “internal” modes of the SiO4 tetrahedra.

In contrast, the B1u mode near 131 cm�1 (which is neither
Raman nor infra-red active) corresponds to a rigid rotation
of the SiO4 tetrahedra around the c-axis, and has very large
negative values ~ �6 for c1311 and c1313 (Fig. 3e) because it is
the soft mode that drives the displacive phase transition from
zircon to a high-pressure phase with lower symmetry (Stan-
garone et al., 2019). The large negative values indicate that
the wavenumber of this mode decreases strongly with
increasing pressure (Fig. 4). The B2g mode near 265 cm�1

and the Eg mode near 201 cm�1 also have both phonon-
mode Grüneisen tensor components negative, but they are
small in magnitude (Table 2). This indicates that they are
modes that soften because they either couple with the soft
mode directly or with the strain. Direct coupling may be

Table 2. Characteristics of selected phonon modes of zircon.

xm
0;DFT (cm�1) xm

0;298K (cm�1) Symmetry % of motion
(according to
cation mass
substitution)

Atomic motions cm1 cm3

Note 1 Zr% Si% O% Note 2

130.6 (Note 3) Inactive B1u 0 0 100 Rigid rotation of the SiO4. No motion
of Zr or Si

�6.5(1) �6.1(2)

196.9 201.0 Eg 17 19 64 Rigid rotation of the SiO4 around the
c-axis, rocking of the ZrO8

�0.63(2) �0.23(3)

213.6 213.4 B1g 96 3 1 Gliding of the Zr along the c-axis 1.22(2) 3.44(3)
223.1 224.0 Eg 56 7 37 Rigid rotation of the SiO4 around the

a-axis, shearing of the Zr in (001)
�0.27(2) 1.31(3)

247.8 265.5 B2g 0 0 100 Anti-symmetric twist of the SiO4
and ZrO8 around the c-axis.

�1.19(2) �0.43(2)

341.5 356.0 Eg 27 19 54 Rigid rotation of the SiO4 around the
a-axis, shearing of the Zr in (001)

3.785(10) 1.337(13)

386.5 392.7 B1g 3 33 65 Rigid translation of SiO4 groups 0.575(7) 3.372(12)
437.7 438.8 A1g 0 0 100 Symmetric flattening of the SiO4

along the c-axis, changing the Osh–Osh
distance along the shared edge and opening the
Osh–Si–Osh angle

0.371(9) 1.843(12)

541.0 545.5 Eg 4 28 68 Anti-symmetric stretching of SiO4 groups
with Si translation

0.121(4) 0.939(6)

635.6 641.2 B1g 1 34 65 Anti-symmetric bending of opposite
Osh–Si–Osh angles in each SiO4, generating
anti-symmetric Zr–O stretching in ZrO8

0.852(5) 0.243(7)

921.0 923.2 Eg 0 37 63 Anti-symmetric stretching between Si and the
edge sharing oxygen atoms with the Zr–O
polyhedra

1.035(3) 2.122(4)

969.0 974.8 A1g 0 0 100 Symmetric stretching of Si–O, generating
stretching of Zr–O and bending of O–Zr–O in
ZrO8

1.161(3) 1.256(4)

1014.4 1008.7 B1g 0 39 61 Stretching Si of Si–O that is anti-symmetric
with respect to the Osh–Osh edge of SiO4
generating stretching of Zr–O and bending of
O–Zr–O in ZrO8

1.125(3) 1.708(6)

Notes:
(1) Determined by fitting experimental Raman data measured over the temperature range from 80 to 1400 K (see Supplementary Material).
Values agree within experimental uncertainties with other published experimental data (Syme et al., 1977; Kolesov et al., 2001; Schmidt
et al., 2013), see also Fig. 5.
(2) The values of the phonon-mode Grüneisen tensor components given in this table were determined in combination with the values of
xm
0;298K given in the second column. Therefore, this value of xm

0;298K must be used in combination with the cmi in order to correctly calculate
strains from experimental wavenumber shifts �xm

exp = xm
exp � xm

0;exp.
(3) The B1u mode at xm

0;DFT = 130.6 cm�1 is neither Raman nor infra-red active, so x131
0;298K cannot be measured. Therefore the values of c1311

and c1313 have been calculated using xm
0;DFT.
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expected in this case, because both of these modes also
involve rotations (or twists) of the SiO4 tetrahedra around
the c-axis as does the B1u soft mode. Similarly, the Eg mode
at 224 cm�1 also involves rigid rotations of the SiO4 tetra-
hedra (Table 2) and has c2241 < 0 and c2243 > 0. The phonon-
mode Grüneisen tensors therefore clearly distinguish the
so-called “hard modes” (e.g., Salje, 1992; Salje & Bismayer,
1997) which have relatively small positive components cmi
from soft modes that drive displacive phase transitions to
low-symmetry phases at high pressure (large negative cmi ),
and the modes that are affected by, or support, the same
phase transitions (small negative cmi ).
This analysis is based (Eq. (1)) on a linear relationship

between the changes in wavenumbers of the phonon modes
and the strains, while the DFT simulations show (Fig. 3) that
there are small non-linearities in the variation of wavenum-
bers with strain. It therefore should be understood that the
values of cm1 and cm3 determined from the DFT simulations
are average values over the range of strains included in
the analysis. Whether the values are correct, and whether

Fig. 3. Contour maps of the calculated change of the wavenumbers
of selected phonon modes of zircon with non-symmetry-breaking
strains e1 and e3. Contours were interpolated on the calculated mode
wavenumbers without any model. They are drawn with the same
interval of 2 cm�1 in each map, and are labelled in cm�1. The same
colour scale is used for all plots. The black dots in part (a) indicate
the strain conditions at which DFT simulations were performed. The
blue line in part (b) is the isochor of the volume of the reference
structure. It is clear that the wavenumber of this mode changes
significantly along an isochor.

Fig. 4. Comparison of the pressure variation of selected phonon
modes of zircon at room temperature predicted from the phonon-
mode Grüneisen tensors (Table 2) and the variation of cell
parameters with pressure (Zaffiro, 2019) shown as lines, with
experimental data (open symbols, Schmidt et al., 2013; filled
symbols, Pina-Binvignat et al., 2018). The B1u mode at 131 cm�1 is
Raman inactive and cannot be measured with conventional Raman
spectroscopy. The other modes not included in the figure show
similar agreement between prediction and experiment.
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they can be used for larger strains, can only be determined
by comparison with experimental data. We can use the
known EoS and cell-parameter variation of zircon (Zaffiro,
2019) to calculate the strains relative to room conditions
induced by P and/or T, and from the calculated strains pre-
dict the change in the phonon wavenumber from Equation
(1). Figure 4 shows that the Grüneisen tensor approach cor-
rectly predicts the shifts of the phonon modes with pressure,
including the Eg modes at 201 cm�1 and 224 cm�1 that are
coupled to the soft B1u mode. A limit to the linear relation-
ship might be indicated by the small discrepancies between
predicted and observed phonon-mode wavenumber changes
when Dxm > 20 cm�1 or P > 7 GPa, whichever occurs first.
However, Fig. 5 shows that the experimental measure-

ments of the phonon-mode wavenumbers at both low and
high temperatures at room pressure are not predicted by
the mode Grüneisen tensor components determined from
the DFT simulations. For the hard modes the decrease in
wavenumber with increasing temperature is underestimated,
by different amounts for the various modes. For the phonon
modes with negative cmi the positive strains associated with
thermal expansion mean that the Grüneisen tensor approach
predicts that these modes should exhibit a positive wavenum-
ber change with increasing temperature, whereas the oppo-
site is observed experimentally for the Eg mode at 201 cm�1.

4. Discussion

Phonon-mode Grüneisen tensor coefficients calculated from
the results of DFT simulations predict the experimentally
measured mode-wavenumber changes of zircon with P at
room T (Fig. 4), which shows that the results of the DFT
simulations are accurate. Therefore, the failure to correctly
predict the mode shifts induced by T alone (Fig. 5) must

arise from the application of the concept of the phonon-
mode Grüneisen tensor. This result is very different from
quartz, where the phonon-mode Grüneisen tensor compo-
nents correctly predict the changes in the wavenumbers of
Raman modes with both P and T, at least at conditions
where the effects of the alpha-beta phase transition do not
dominate the behaviour of quartz (Murri et al., 2018, 2019).
This contrast in the behaviour of the Raman modes of

quartz and zircon can be understood as the consequence
of differences in the anisotropies of their compressibility
and thermal expansion.
When the strains in a crystal are induced by a change in

hydrostatic pressure at constant temperature, we can rewrite
Equation (1) in terms of the axial compressibilities

bi ¼ �1
li

� dlidP :

oxm

oP

� �
T

¼ 2cm1 b1 þ cm3 b3

� �
xm

0 : ð2Þ

Hazen & Finger (1982) established that, in general, direc-
tions in minerals that are stiff and therefore have large linear
moduli and small values of linear compressibility, tend also
to be the directions of relatively low linear thermal expan-
sion. This makes intuitive sense in a simplistic way; stiffer
directions in a mineral structure are often associated with
chains of strong inter-atomic bonds, and the strong bonding
might be expected to lead to low values of linear thermal
expansion.1 If the ratio of the linear thermal expansion coef-

ficient ai ¼ 1
li
� dlidT to the compressibility is the same for all

directions i in a crystal, then in uniaxial crystals such as
zircon and quartz:

a1

b1
¼ a3

b3
¼ aV

bV
: ð3Þ

Within 1% this is true for quartz at room conditions
(Table 3). Substitution from (3) into (2) gives:

oxm

oP

� �
T

¼ 2cm1 a1 þ cm3 a3

� � bV

aV

� �
xm

0 : ð4Þ

Comparison to the expression for the effect of isobaric
temperature change on the phonon wavenumbers (Angel
et al., 2019) which also follows from Equation (1):

oxm

oT

� �
P

¼ � 2cm1 a1 þ cm3 a3

� �
xm

0 ; ð5Þ

shows that, in this particular case of isotropy, the relation-
ship between the isobaric and isothermal changes in pho-
non wavenumbers is:

Fig. 5. Comparison of the temperature variation of selected phonon
modes of zircon at room pressure calculated from the phonon-mode
Grüneisen tensors (Table 2) and the variation of cell parameters with
temperature (Zaffiro, 2019) shown as lines, with experimental data
(open symbols, Schmidt et al. (2013); filled symbols, this work, data
in Supplementary Material). The B1u mode at 131 cm�1 is Raman
inactive and cannot be measured with conventional Raman
spectroscopy. The other modes not included in the figure show
similar differences between prediction and experiment.

1 Of course this is an overly simplistic view. Stiffness in a given direction
in a crystal structure is due to the mutual repulsion of adjacent atoms, not to
their attraction, and it is a property of the static structure. Whereas the
thermal expansivity is related to the anharmonicity of the inter-atomic
interactions and the strength of the bonding and is therefore an intrinsically
dynamic property!
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oxm

oP

� �
T

¼ � bV

aV

� �
oxm

oT

� �
P

: ð6Þ

Because we have eliminated the phonon-mode Grüneisen
tensor components cm1 and cm3 from the equations without
making any further assumptions, we have shown that when
a crystal exhibits isotropy in ai/bi (Eq. (3)), the same pho-
non-mode Grüneisen tensor can explain the changes in pho-
non-mode wavenumbers induced by changes in either P or
T, as found for many modes in quartz (Murri et al., 2018).
Similarly, it will always apply to cubic materials, for which
Equation (3) is always true.
However, the c-axis of zircon is considerably stiffer than

the a-axis and also has a higher thermal expansion coeffi-
cient (Table 3), as a consequence of the Zr–Si repulsion
across the shared O–O polyhedral edge. Therefore Equation
(3) does not hold for zircon and therefore Equation (4) and
the subsequent equations cannot be derived, which means
that the thermally induced changes in phonon-mode
wavenumbers in zircon are independent and different from
the wavenumber changes induced by hydrostatic pressure.
However, the changes in phonon-mode wavenumbers
induced by pressure (Fig. 4), or strain, at any fixed temper-
ature are still correctly predicted by the phonon-mode
Grüneisen tensor, meaning that we can still use the concept
to determine isothermal strains in crystals from the measured
Raman shifts.

5. Conclusions

Our determination of the phonon modes of zircon under
various strains which deviate from hydrostatic stress condi-
tions has shown that, if the temperature is held constant, the
changes in their wave numbers depends approximately
linearly on the unit-cell strains, up to strains of a few %
(Figs. 3, 4). This linear dependence is described by the com-
ponents of the phonon-mode Grüneisen tensors of zircon,
which we have reported for all of the Raman-active bands
(Table 2). Because of the strong anisotropy of the ratio of

linear thermal expansion to linear compressibility (the aniso-
tropic thermal pressure tensor; Nye, 1957) in zircon, these
phonon-mode Grüneisen tensors do not describe the temper-
ature-induced shifts in the phonon-mode wavenumbers
(Fig. 5). Nonetheless, they do correctly predict the changes
in phonon wavenumbers with isothermal changes in hydro-
static pressure (Fig. 4), and should therefore also apply to
conditions of non-hydrostatic stress. Thus, the values of
cm1 and cm3 that we have determined for zircon (Table 2)
can be used to map the residual strains in zircon inclusions
trapped inside garnets, and other host minerals that are
almost elastically isotropic.
For example, Fig. 6 shows the strains calculated from

Raman spectra collected on two traverses across a zircon
inclusion trapped about 1 cm from the rim of a 12 cm-
diameter pyrope megablast from the whiteschists of the
UHP Brossasco-Isasca Unit in the Dora-Maira massif origi-
nally described by Chopin (1984). The full Raman spectrum
at each point was measured (Fig. 6b). The Raman shift of the
356 cm�1 Eg mode along the two traverses of the inclusion
(Fig. 6c) is clearly different and this shows immediately that
the strain in the inclusion is inhomogeneous. A total of seven
Raman peaks from zircon are clearly resolved from the spec-
tra of the garnet host (Fig. 6b). Of these, the three peaks at
200–225 cm�1 and the peak near 439 cm�1 exhibit small
shifts with strains as the combination of relatively small coef-
ficients of their phonon-mode Grüneisen tensors (Table 2)
and small values of xm

0 . This combination of factors means
that their measured shifts from the reference crystal do not
significantly constrain the values of strains. On the other
hand, the Raman-active modes near 356, 975 and
1009 cm�1 are stronger (Fig. 6b) and exhibit larger shifts.
The difference in the ratios cm1 =c

m
3 for these three modes

means that their isoshift lines have different slopes when
plotted against the strains e1 and e3 (e.g., Fig. 3a, b). There-
fore, the strains at any one point in the inclusion can be deter-
mined from the changes in wavenumber of these three
Raman modes.
The determination of strains from the Raman spectra of

inclusions is entirely dependent on the difference in peak
wavenumber from that of an unstrained reference crystal.
We therefore measured an unstrained reference crystal in
air during the same measurement session and calculated
the difference in wavenumbers as �xm

exp= xm
exp � xm

0;exp.
Strains were then calculated from the values of �xm

expby
using Equation (1) in a least-squares procedure implemented
in the stRAinMAN program (Angel et al., 2019) which is
available at www.rossangel.net. The file zircon_gtensor.cif
provided in the Supplementary Material for this paper and
available on-line contains the values of cm1 and cm3 for all
of the Raman active modes of zircon and can be used to per-
form this calculation. In this way, the strains and their gra-
dients can be mapped across trapped inclusions by Raman
spectroscopy (Fig. 6d). It is clear that the strains not only
vary significantly between the different points, but the gradi-
ent in strains along the crystal is different for e1 and e3. This
confirms that the strains vary inhomogeneously throughout
the inclusion as a consequence of its shape (Mazzucchelli
et al., 2018) and elastic anisotropy (Mazzucchelli, 2019),

Table 3. Thermo-elastic properties of zircon and quartz at room
conditions.

a-axis c-axis Volume

Zircon

MT, KT: GPa 578 1009 225
b: TPa�1 1.73 0.99 4.45
a: 105 K�1 0.29 0.49 1.07
a/b: ΜPa K�1 1.71 4.99 2.400

Quartz
MT, KT: GPa 102 137 37.1
b: TPa�1 9.80 7.31 26.9
a: 105 K�1 1.36 1.02 3.74
a/b: MPa K�1 1.38 1.40 1.39

Notes: Volume EoS and anisotropic properties of zircon from
Zaffiro (2019). Volume EoS of quartz from Angel et al. (2017a) and
anisotropic properties from Alvaro et al., submitted.
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and consequently the inclusion is under inhomogeneous
stress, with significant stress gradients.
The interpretation of the strains of the inclusion in terms

of entrapment conditions can then be performed two ways.
If the inclusion was approximately spherical, or ellipsoidal,
then the strains would be anisotropic and homogeneous, and
could be converted to stresses. The mean normal stress
could then be used as the inclusion pressure within an iso-
tropic calculation to yield the entrapment isomeke (Angel
et al., 2014, 2017b) which should approximate the entrap-
ment conditions. A more complete but more complex anal-
ysis for inclusions shaped as the one in Fig. 6 requires the
anisotropic relaxation of the host–inclusion system to be cal-
culated (Mazzucchelli, 2019) and then the individual strains
at the centre of the inclusion, after correction for relaxation,
can be combined to calculate the entrapment P and T.
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